
Linux Shell Scripting Tutorial Ver. 1.0
Written by Vivek G Gite

I N D E X
Introduction

Kernel❍

Shell❍

How to use Shell❍

Common Linux Command Introduction❍

●

Process

Why Process required❍

Linux commands related with process❍

●

Redirection of Standard output/input

Redirectors❍

Pipes❍

Filters❍

●

Shell Programming

Variables in Linux❍

How to define User defined variables❍

Rules for Naming variable name❍

How to print or access value of UDV (User defined variables)❍

How to write shell script❍

How to Run Shell Scripts❍

Quotes in Shell Scripts❍

●

Linux Shell Scripting Tutorial

http://www.freeos.com/guides/lsst/index.htm (1 of 2) [17/08/2001 17.41.52]

Shell Arithmetic❍

Command Line Processing (Command Line Arguments)❍

Why Command Line arguments required❍

Exit Status❍

Filename Shorthand or meta Characters (i.e. wild cards)❍

Programming Commands

echo command❍

Decision making in shell script (i.e. if command)❍

test command or [expr]❍

Loop in shell scripts❍

The case Statement❍

The read Statement❍

●

More Advanced Shell Script Commands

/dev/null - Use to send unwanted output of program❍

Local and Global Shell variable (export command)❍

Conditional execution i.e. && and ||❍

I/O Redirection and file descriptors❍

Functions❍

User Interface and dialog utility❍

trap command❍

getopts command❍

More examples of Shell Script (Exercise for You :-)❍

●

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Scripting Tutorial

http://www.freeos.com/guides/lsst/index.htm (2 of 2) [17/08/2001 17.41.52]

http://www.freeos.com/

Introduction
This tutorial is designed for beginners only and This tutorial explains the basics of
shell programming by showing some examples of shell programs. Its not help or
manual for the shell. While reading this tutorial you can find manual quite useful (
type man bash at $ prompt to see manual pages). Manual contains all necessary
information you need, but it won't have that much examples, which makes idea
more clear. For that reason, this tutorial contains examples rather than all the
features of shell. I assumes you have at least working knowledge of Linux i.e. basic
commands like how to create, copy, remove files/directories etc or how to use
editor like vi or mcedit and login to your system. Before Starting Linux Shell Script
Programming you must know

Kernel●

Shell●

Process●

Redirectors, Pipes, Filters etc.●

What's Kernel
Kernel is hart of Linux O/S. It manages resource of Linux O/S. Resources means
facilities available in Linux. For eg. Facility to store data, print data on printer,
memory, file management etc . Kernel decides who will use this resource, for how
long and when. It runs your programs (or set up to execute binary files) It's
Memory resident portion of Linux. It performance following task :-

I/O management●

Process management●

Device management●

File management●

Memory management●

What's Linux Shell
Computer understand the language of 0's and 1's called binary language, In early
days of computing, instruction are provided using binary language, which is difficult
for all of us, to read and write. So in O/s there is special program called Shell. Shell
accepts your instruction or commands in English and translate it into computers
native binary language.

This is what Shell Does for US

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/kershell.htm (1 of 5) [17/08/2001 17.42.02]

You type Your command and shell convert it as

It's environment provided for user interaction. Shell is an command language
interpreter that executes commands read from the standard input device
(keyboard) or from a file. Linux may use one of the following most popular shells
(In MS-DOS, Shell name is COMMAND.COM which is also used for same purpose,
but it's not as powerful as our Linux Shells are!)

Shell Name Developed by Where Remark

BASH (Bourne-Again
SHell)

Brian Fox and Chet
Ramey

Free Software
Foundation

Most common shell in
Linux. It's Freeware
shell.

CSH (C SHell) Bill Joy
University of California
(For BSD)

The C shell's syntax and
usage are very similar to
the C programming
language.

KSH (Korn SHell) David Korn AT & T Bell Labs

Any of the above shell reads command from user (via Keyboard or Mouse) and tells
Linux O/s what users want. If we are giving commands from keyboard it is called
command line interface (Usually in-front of $ prompt, This prompt is depend upon
your shell and Environment that you set or by your System Administrator,
therefore you may get different prompt).
NOTE: To find your shell type following command
$ echo $SHELL

How to use Shell
To use shell (You start to use your shell as soon as you log into your system) you
have to simply type commands. Following is the list of common commands.

Linux Common Commands
NOTE that following commands are for New users or for Beginners only. The
purpose is if you use this command you will be more familiar with your shell and
secondly, you need some of these command in your Shell script. If you want to get
more information or help for this command try following commands For e.g. To see
help or options related with date command try
$ date --help
or To see help or options related with ls command (Here you will screen by screen
help, since help of ls command is quite big that can't fit on single screen)

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/kershell.htm (2 of 5) [17/08/2001 17.42.02]

$ ls --help | more
Syntax: command-name --help
Syntax: man command-name
Syntax: info command-name
See what happened when you type following
$ man ls
$ info bash
NOTE: In MS-DOS, you get help by using /? clue or by typing help command as
C:\> dir /?
C:\> date /?
C:\> help time
C:\> help date
C:\> help

Linux Command

For this Purpose Use this Command Syntax
Example (In front of $
Prompt)

To see date date $ date
To see who's using
system. who $ who

Print working directory pwd $ pwd
List name of files in
current directory ls or dirs $ ls

To create text file
NOTE: Press and hold
CTRL key and press D to
stop or to end file
(CTRL+D)

cat > { file name }

$ cat > myfile
 type your text
 when done press
^D

To text see files cat {file name } $ cat myfile
To display file one full
screen at a time more {file name } $ more myfile

To move or rename
file/directory

mv {file1} {file2} $ mv sales
sales.99

To create multiple file
copies with various link.
After this both oldfile
newfile refers to same
name

ln {oldfile} {newfile} $ ln Page1 Book1

To remove file rm file1 $ rm myfile

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/kershell.htm (3 of 5) [17/08/2001 17.42.02]

Remove all files in given
directory/subdirectory.
Use it very carefully.

rm -rf {dirname} $ rm -rf oldfiles

To change file access
permissions

 u - User who owns the
file
 g - Group file owner
 o - User classified as
other
 a - All other system user

 + Set permission
 - Remove permission

 r - Read permission
 w - Write permission
 x - Execute permission

chmod {u|g|o|a} {+|-} {r|w|x} {filename}

$ chmod
u+x,g+wx,o+x myscript

NOTE: This command set
permission for file called
'myscript' as User (Person
who creates that file or
directory) has execute
permission (u+x) Group of
file owner can write to this
file as well as execute this
file (g+wx) Others can
only execute file but can
not modify it, Since we
have not given w (write
permission) to them. (o+x).

Read your mail. mail $ mail
To See more about
currently login person
(i..e. yourself)

who am i $ who am i

To login out logout (OR press CTRL+D)

$ logout
(Note: It may ask
you password type
your login password,
In some case this
feature is disabled by
System
Administrator)

Send mail to other person mail {user-name} $ mail ashish
To count lines, words and
characters of given file

wc {file-name} $wc myfile

To searches file for line
that match a pattern.

grep {word-to-lookup} {filename} $ grep fox
myfile

To sort file in following
order
-r Reverse normal order
-n Sort in numeric order
-nr Sort in reverse
numeric order

sort -r -n -nr {filename} $sort myfile

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/kershell.htm (4 of 5) [17/08/2001 17.42.02]

To print last | first line of
given file

tail - | + { linenumber } {filename} $tail +5 myfile

To Use to compare files
cmp {file1} {file2}
 OR
diff {file1} {file2}

$cmp myfile
myfile.old

To print file pr {file-name} $pr myfile

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/kershell.htm (5 of 5) [17/08/2001 17.42.02]

http://www.freeos.com/

What is Processes
Process is any kind of program or task carried out by your PC. For e.g. $ ls -lR , is
command or a request to list files in a directory and all subdirectory in your current
directory. It is a process. A process is program (command given by user) to
perform some Job. In Linux when you start process, it gives a number (called PID
or process-id), PID starts from 0 to 65535.

Why Process required
Linux is multi-user, multitasking o/s. It means you can run more than two process
simultaneously if you wish. For e.g.. To find how many files do you have on your
system you may give command like
$ ls / -R | wc -l
This command will take lot of time to search all files on your system. So you can
run such command in Background or simultaneously by giving command like
$ ls / -R | wc -l &
The ampersand (&) at the end of command tells shells start command (ls / -R | wc
-l) and run it in background takes next command immediately. An instance of
running command is called process and the number printed by shell is called
process-id (PID), this PID can be use to refer specific running process.

Linux Command Related with Process
For this purpose Use this Command Example
To see currently running
process ps $ ps

To stop any process i.e. to
kill process kill {PID} $ kill 1012

To get information about all
running process ps -ag $ ps -ag

To stop all process except
your shell kill 0 $ kill 0

For background processing
(With &, use to put particular
command and program in
background)

 linux-command & $ ls / -R | wc -l &

NOTE that you can only kill process which are created by yourself. A Administrator
can almost kill 95-98% process. But some process can not be killed, such as VDU
Process.

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/process.htm [17/08/2001 17.42.03]

http://www.freeos.com/

Redirection of Standard output/input or Input - Output
redirection
Mostly all command gives output on screen or take input from keyboard, but in
Linux it's possible to send output to file or to read input from file. For e.g. $ ls
command gives output to screen; to send output to file of ls give command , $ ls
> filename. It means put output of ls command to filename. There are three main
redirection symbols >,>>,<

(1) > Redirector Symbol
Syntax: Linux-command > filename
To output Linux-commands result to file. Note that If file already exist, it will be
overwritten else new file is created. For e.g. To send output of ls command give
$ ls > myfiles
Now if 'myfiles' file exist in your current directory it will be overwritten without any
type of warning. (What if I want to send output to file, which is already exist and
want to keep information of that file without loosing previous information/data?,
For this Read next redirector)

(2) >> Redirector Symbol
Syntax: Linux-command >> filename
To output Linux-commands result to END of file. Note that If file exist , it will be
opened and new information / data will be written to END of file, without losing
previous information/data, And if file is not exist, then new file is created. For e.g.
To send output of date command to already exist file give
$ date >> myfiles

(3) < Redirector Symbol
Syntax: Linux-command < filename
To take input to Linux-command from file instead of key-board. For e.g. To take
input for cat command give
$ cat < myfiles

Pips
A pipe is a way to connect the output of one program to the input of another
program without any temporary file.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/rpf.htm (1 of 2) [17/08/2001 17.42.10]

A pipe is nothing but a temporary storage place where the output of one command
is stored and then passed as the input for second command. Pipes are used to run
more than two commands (Multiple commands) from same command line.
Syntax: command1 | command2

Command using Pips Meaning or Use of Pipes

$ ls | more
Here the output of ls command is given as input to
more command So that output is printed one screen
full page at a time

$ who | sort
Here output of who command is given as input to
sort command So that it will print sorted list of
users

$ who | wc -l
Here output of who command is given as input to
wc command So that it will number of user who
logon to system

$ ls -l | wc -l
Here output of ls command is given as input to wc
command So that it will print number of files in
current directory.

$ who | grep raju

 Here output of who command is given as input to
grep command So that it will print if particular user
name if he is logon or nothing is printed (To see
for particular user logon)

Filter
If a Linux command accepts its input from the standard input and produces its
output on standard output is know as a filter. A filter performs some kind of
process on the input and gives output. For e.g.. Suppose we have file called
'hotel.txt' with 100 lines data, And from 'hotel.txt' we would like to print contains
from line number 20 to line number 30 and store this result to file called 'hlist' then
give command
$ tail +20 < hotel.txt | head -n30 >hlist
Here head is filter which takes its input from tail command (tail command start
selecting from line number 20 of given file i.e. hotel.txt) and passes this lines to
input to head, whose output is redirected to 'hlist' file.

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/rpf.htm (2 of 2) [17/08/2001 17.42.10]

http://www.freeos.com/

Introduction to Shell Programming
Shell program is series of Linux commands. Shell script is just like batch file is MS-DOS but have
more power than the MS-DOS batch file. Shell script can take input from user, file and output them
on screen. Useful to create our own commands that can save our lots of time and to automate some
task of day today life.

Variables in Linux
Sometimes to process our data/information, it must be kept in computers RAM memory. RAM
memory is divided into small locations, and each location had unique number called memory
location/address, which is used to hold our data. Programmer can give a unique name to this
memory location/address called memory variable or variable (Its a named storage location that may
take different values, but only one at a time). In Linux, there are two types of variable
1) System variables - Created and maintained by Linux itself. This type of variable defined in
CAPITAL LETTERS.
2) User defined variables (UDV) - Created and maintained by user. This type of variable defined
in lower LETTERS.

Some System variables
You can see system variables by giving command like $ set, Some of the important System
variables are

System Variable Meaning

BASH=/bin/bash Our shell name

BASH_VERSION=1.14.7(1) Our shell version name

COLUMNS=80 No. of columns for our screen

HOME=/home/vivek Our home directory

LINES=25 No. of columns for our screen

LOGNAME=students Our logging name

OSTYPE=Linux Our o/s type : -)

PATH=/usr/bin:/sbin:/bin:/usr/sbin Our path settings

PS1=[\u@\h \W]\$ Our prompt settings

PWD=/home/students/Common Our current working directory

SHELL=/bin/bash Our shell name

USERNAME=vivek User name who is currently login to this PC

NOTE that Some of the above settings can be different in your PC. You can print any of the above
variables contain as follows
$ echo $USERNAME
$ echo $HOME
Caution: Do not modify System variable this can some time create problems.

How to define User defined variables (UDV)
To define UDV use following syntax
Syntax: variablename=value
NOTE: Here 'value' is assigned to given 'variablename' and Value must be on right side = sign For
e.g.
$ no=10 # this is ok
$ 10=no # Error, NOT Ok, Value must be on right side of = sign.
To define variable called 'vech' having value Bus

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (1 of 19) [17/08/2001 17.42.21]

$ vech=Bus
To define variable called n having value 10
$ n=10

Rules for Naming variable name (Both UDV and System Variable)
(1) Variable name must begin with Alphanumeric character or underscore character (_), followed by
one or more Alphanumeric character. For e.g. Valid shell variable are as follows
HOME
SYSTEM_VERSION
vech
no

(2) Don't put spaces on either side of the equal sign when assigning value to variable. For e.g.. In
following variable declaration there will be no error
$ no=10
But here there will be problem for following
$ no =10
$ no= 10
$ no = 10

(3) Variables are case-sensitive, just like filename in Linux. For e.g.
$ no=10
$ No=11
$ NO=20
$ nO=2
Above all are different variable name, so to print value 20 we have to use $ echo $NO and Not any
of the following
$ echo $no # will print 10 but not 20
$ echo $No # will print 11 but not 20
$ echo $nO # will print 2 but not 20

(4) You can define NULL variable as follows (NULL variable is variable which has no value at the time
of definition) For e.g.
$ vech=
$ vech=""
Try to print it's value $ echo $vech , Here nothing will be shown because variable has no value i.e.
NULL variable.

(5) Do not use ?,* etc, to name your variable names.

How to print or access value of UDV (User defined variables)
To print or access UDV use following syntax
Syntax: $variablename
For eg. To print contains of variable 'vech'
$ echo $vech
It will print 'Bus' (if previously defined as vech=Bus) ,To print contains of variable 'n' $ echo $n
It will print '10' (if previously defined as n=10)
Caution: Do not try $ echo vech It will print vech instead its value 'Bus' and $ echo n, It will print
n instead its value '10', You must use $ followed by variable name.

Q.1.How to Define variable x with value 10 and print it on screen
$ x=10
$ echo $x

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (2 of 19) [17/08/2001 17.42.21]

Q.2.How to Define variable xn with value Rani and print it on screen
$ xn=Rani
$ echo $xn

Q.3.How to print sum of two numbers, let's say 6 and 3
$ echo 6 + 3
This will print 6 + 3, not the sum 9, To do sum or math operations in shell use expr, syntax is as
follows Syntax: expr op1 operator op2
Where, op1 and op2 are any Integer Number (Number without decimal point) and operator can be
+ Addition
- Subtraction
/ Division
% Modular, to find remainder For e.g. 20 / 3 = 6 , to find remainder 20 % 3 = 2, (Remember its
integer calculation)
* Multiplication
$ expr 6 + 3
Now It will print sum as 9 , But
$ expr 6+3
will not work because space is required between number and operator (See Shell Arithmetic)

Q.4.How to define two variable x=20, y=5 and then to print division of x and y (i.e. x/y)
$x=20
$ y=5
$ expr x / y

Q.5.Modify above and store division of x and y to variable called z
$ x=20
$ y=5
$ z=`expr x / y`
$ echo $z
Note : For third statement, read Shell Arithmetic.

How to write shell script
Now we write our first script that will print "Knowledge is Power" on screen. To write shell script you
can use in of the Linux's text editor such as vi or mcedit or even you can use cat command. Here we
are using cat command you can use any of the above text editor. First type following cat command
and rest of text as its

$ cat > first
#
My first shell script
#
clear
echo "Knowledge is Power"

Press Ctrl + D to save. Now our script is ready. To execute it type command
$./first
This will give error since we have not set Execute permission for our script first; to do this type
command
$ chmod +x first
$./first
First screen will be clear, then Knowledge is Power is printed on screen. To print message of
variables contains we user echo command, general form of echo command is as follows
echo "Message"
echo "Message variable1, variable2....variableN"

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (3 of 19) [17/08/2001 17.42.21]

How to Run Shell Scripts
Because of security of files, in Linux, the creator of Shell Script does not get execution permission by
default. So if we wish to run shell script we have to do two things as follows
(1) Use chmod command as follows to give execution permission to our script
Syntax: chmod +x shell-script-name
OR Syntax: chmod 777 shell-script-name
(2) Run our script as
Syntax: ./your-shell-program-name
For e.g.
$./first
Here '.'(dot) is command, and used in conjunction with shell script. The dot(.) indicates to current
shell that the command following the dot(.) has to be executed in the same shell i.e. without the
loading of another shell in memory. Or you can also try following syntax to run Shell Script
Syntax: bash &nbsh;&nbsh; your-shell-program-name
OR /bin/sh &nbsh;&nbsh; your-shell-program-name
For e.g.
$ bash first
$ /bin/sh first
Note that to run script, you need to have in same directory where you created your script, if you are
in different directory your script will not run (because of path settings), For eg. Your home directory
is (use $ pwd to see current working directory) /home/vivek. Then you created one script called
'first', after creation of this script you moved to some other directory lets say
/home/vivek/Letters/Personal, Now if you try to execute your script it will not run, since script 'first'
is in /home/vivek directory, to Overcome this problem there are two ways First, specify complete
path of your script when ever you want to run it from other directories like giving following
command
$ /bin/sh /home/vivek/first

Now every time you have to give all this detailed as you work in other directory, this take time and
you have to remember complete path. There is another way, if you notice that all of our programs
(in form of executable files) are marked as executable and can be directly executed from prompt
from any directory (To see executables of our normal program give command $ ls -l /bin or ls -l
/usr/bin) by typing command like
$ bc
$ cc myprg.c
$ cal
etc, How this happed? All our executables files are installed in directory called /bin and /bin directory
is set in your PATH setting, Now when you type name of any command at $ prompt, what shell do is
it first look that command in its internal part (called as internal command, which is part of Shell
itself, and always available to execute, since they do not need extra executable file), if found as
internal command shell will execute it, If not found It will look for current directory, if found shell
will execute command from current directory, if not found, then Shell will Look PATH setting, and try
to find our requested commands executable file in all of the directories mentioned in PATH settings,
if found it will execute it, otherwise it will give message "bash: xxxx :command not found", Still
there is one question remain can I run my shell script same as these executables. Yes you can, for

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (4 of 19) [17/08/2001 17.42.21]

this purpose create bin directory in your home directory and then copy your tested version of shell
script to this bin directory. After this you can run you script as executable file without using $./shell
script-name syntax, Following are steps
$ cd
$ mkdir bin
$ cp first ~/bin
$ first
Each of above command Explanation

Each of above command Explanation

$ cd Go to your home directory

$ mkdir bin
Now created bin directory, to install your own shell
script, so that script can be run as independent
program or can be accessed from any directory

$ cp first ~/bin copy your script 'first' to your bin directory

$ first Test whether script is running or not (It will run)

In shell script comment is given with # character. This comments are ignored by your shell.
Comments are used to indicate use of script or person who creates/maintained script, or for some
programming explanation etc. Remember always set Execute permission for you script.

Commands Related with Shell Programming
(1)echo [options] [string, variables...]
Displays text or variables value on screen.
Options
-n Do not output the trailing new line.
-e Enable interpretation of the following backslash escaped characters in the strings:
\a alert (bell)
\b backspace
\c suppress trailing new line
\n new line
\r carriage return
\t horizontal tab
\\ backslash
For eg. $ echo -e "An apple a day keeps away \a\t\tdoctor\n"

(2)More about Quotes
There are three types of quotes
" i.e. Double Quotes
' i.e. Single quotes
` i.e. Back quote
1."Double Quotes" - Anything enclose in double quotes removed meaning of that characters (except
\ and $).
2. 'Single quotes' - Enclosed in single quotes remains unchanged.
3. `Back quote` - To execute command.
For eg.
$ echo "Today is date"
Can't print message with today's date.
$ echo "Today is `date`".
Now it will print today's date as, Today is Tue Jan,See the `date` statement uses back quote,
(See also Shell Arithmetic NOTE).

(3) Shell Arithmetic

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (5 of 19) [17/08/2001 17.42.21]

Use to perform arithmetic operations For e.g.
$ expr 1 + 3
$ expr 2 - 1
$ expr 10 / 2
$ expr 20 % 3 # remainder read as 20 mod 3 and remainder is 2)
$ expr 10 * 3 # Multiplication use * not * since its wild card)
$ echo `expr 6 + 3`
For the last statement not the following points
1) First, before expr keyword we used ` (back quote) sign not the (single quote i.e. ') sign. Back
quote is generally found on the key under tilde (~) on PC keyboards OR To the above of TAB key.
2) Second, expr is also end with ` i.e. back quote.
3) Here expr 6 + 3 is evaluated to 9, then echo command prints 9 as sum
4) Here if you use double quote or single quote, it will NOT work, For eg.
$ echo "expr 6 + 3" # It will print expr 6 + 3
$ echo 'expr 6 + 3'

Command Line Processing
Now try following command (assumes that the file "grate_stories_of" is not exist on your disk)
$ ls grate_stories_of
It will print message something like -
grate_stories_of: No such file or directory
Well as it turns out ls was the name of an actual command and shell executed this command when
given the command. Now it creates one question What are commands? What happened when you
type $ ls grate_stories_of? The first word on command line, ls, is name of the command to be
executed. Everything else on command line is taken as arguments to this command. For eg.
$ tail +10 myf
Here the name of command is tail, and the arguments are +10 and myf.
Now try to determine command and arguments from following commands:
$ ls foo
$ cp y y.bak
$ mv y.bak y.okay
$ tail -10 myf
$ mail raj
$ sort -r -n myf
$ date
$ clear

 Command No. of argument to this command Actual Argument

ls 1 foo

cp 2 y and y.bak

mv 2 y.bak and y.okay

tail 2 -10 and myf

mail 1 raj

sort 3 -r, -n, and myf

date 0

clear 0

NOTE: $# holds number of arguments specified on command line. and $* or $@ refer to all
arguments in passed to script. Now to obtain total no. of Argument to particular script, your $#
variable.

Why Command Line arguments required

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (6 of 19) [17/08/2001 17.42.21]

Let's take rm command, which is used to remove file, But which file you want to remove and how
you will you tail this to rm command (Even rm command does not ask you name of file that would
like to remove). So what we do is we write as command as follows
$ rm {file-name}
Here rm is command and file-name is file which you would like to remove. This way you tail to rm
command which file you would like to remove. So we are doing one way communication with our
command by specifying file-name. Also you can pass command line arguments to your script to
make it more users friendly. But how we address or access command line argument in our script.
Lets take ls command
$ ls -a /*
This command has 2 command line argument -a and /* is another. For shell script,
$ myshell foo bar

 Shell Script name i.e. myshell

 First command line argument passed to myshell i.e. foo

 Second command line argument passed to myshell i.e. bar

In shell if we wish to refer this command line argument we refer above as follows

 myshell it is $0

 foo it is $1

 bar it is $2

Here $# will be 2 (Since foo and bar only two Arguments), Please note At a time such 9 arguments
can be used from $0..$9, You can also refer all of them by using $* (which expand to
`$0,$1,$2...$9`) Now try to write following for commands, Shell Script Name ($0), No. of
Arguments (i.e. $#), And actual argument (i.e. $1,$2 etc)
$ sum 11 20
$ math 4 - 7
$ d
$ bp -5 myf +20
$ ls *
$ cal
$ findBS 4 8 24 BIG

Shell Script Name No. Of Arguments to script Actual Argument ($1,..$9)

$0 $# $0 $1 $2 $3 $4

sum 2 11 20

math 3 4 - 7

d 0

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (7 of 19) [17/08/2001 17.42.21]

bp 3 -5 myf +20

ls 1 *

cal 0

findBS 4 4 8 24 BIG

For e.g. now will write script to print command ling argument and we will see how to access them
$ cat > demo
#!/bin/sh
#
Script that demos, command line args
#
echo "Total number of command line argument are $#"
echo "$0 is script name"
echo "$1 is first argument"
echo $2 is second argument"
echo "All of them are :- $*"

Save the above script by pressing ctrl+d, now make it executable
$ chmod +x demo
$./demo Hello World
$ cp demo ~/bin
$ demo
Note: After this, For any script you have to used above command, in sequence, I am not going to
show you all of the above.

(5)Exit Status
By default in Linux if particular command is executed, it return two type of values, (Values are used
to see whether command is successful or not) if return value is zero (0), command is successful, if
return value is nonzero (>0), command is not successful or some sort of error executing
command/shell script. This value is know as Exit Status of that command. To determine this exit
Status we use $? variable of shell. For eg.
$ rm unknow1file
It will show error as follows
rm: cannot remove `unkowm1file': No such file or directory
and after that if you give command $ echo $?
it will print nonzero value(>0) to indicate error. Now give command
$ ls
$ echo $?
It will print 0 to indicate command is successful. Try the following commands and not down there
exit status
$ expr 1 + 3
$ echo $?

$ echo Welcome
$ echo $?

$ wildwest canwork?
$ echo $?

$ date
$ echo $?

$ echon $?

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (8 of 19) [17/08/2001 17.42.21]

$ echo $?

(6)if-then-fi for decision making is shell script Before making any decision in Shell script you must
know following things Type bc at $ prompt to start Linux calculator program
$ bc
After this command bc is started and waiting for you commands, i.e. give it some calculation as
follows type 5 + 2 as
5 + 2
7
7 is response of bc i.e. addition of 5 + 2 you can even try
5 - 2
5 / 2
Now what happened if you type 5 > 2 as follows
5 > 2
0
0 (Zero) is response of bc, How? Here it compare 5 with 2 as, Is 5 is greater then 2, (If I ask same
question to you, your answer will be YES) In Linux (bc) gives this 'YES' answer by showing 0 (Zero)
value. It means when ever there is any type of comparison in Linux Shell It gives only two answer
one is YES and NO is other.

Linux Shell
Value

Meaning Example

Zero Value (0) Yes/True 0

NON-ZERO
Value (> 0)

No/False
-1, 32, 55
anything but not
zero

Try following in bc to clear your Idea and not down bc's response
5 > 12
5 == 10
5 != 2
5 == 5
12 < 2

Expression Meaning to us Your Answer
BC's Response (i.e. Linux Shell
representation in zero & non-zero
value)

5 > 12 Is 5 greater than 12 NO 0

5 == 10 Is 5 is equal to 10 NO 0

5 != 2 Is 5 is NOT equal to 2 YES 1

5 == 5 Is 5 is equal to 5 YES 1

1 < 2 Is 1 is less than 2 Yes 1

Now will see, if condition which is used for decision making in shell script, If given condition is true
then command1 is executed.
Syntax:
 if condition
 then
 command1 if condition is true or if exit status
 of condition is 0 (zero)
 ...
 ...

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (9 of 19) [17/08/2001 17.42.21]

 fi
Here condition is nothing but comparison between two values, for compression we can use test or [
expr] statements or even exist status can be also used. An expression is nothing but combination of
values, relational operator (such as >,<, <> etc) and mathematical operators (such as +, -, / etc).
Following are all examples of expression:
5 > 2
3 + 6
3 * 65
a < b
c > 5
c > 5 + 30 -1
Type following command (assumes you have file called foo)
$ cat foo
$ echo $?
The cat command return zero(0) on successful, this can be used in if condition as follows, Write shell
script as
$ cat > showfile
#!/bin/sh
#
#Script to print file
#
if cat $1
then
 echo -e "\n\nFile $1, found and successfully echoed"
fi

Now run it.
$ chmod +x showfile
$./showfile foo
Here
$./showfile foo
Our shell script name is showfile($0) and foo is argument (which is $1).Now we compare as follows
if cat $1 (i.e. if cat foo)
Now if cat command finds foo file and if its successfully shown on screen, it means our cat command
is successful and its exist status is 0 (indicates success) So our if condition is also true and hence
statement echo -e "\n\nFile $1, found and successfully echoed" is proceed by shell. Now if cat
command is not successful then it returns non-zero value (indicates some sort of failure) and this
statement echo -e "\n\nFile $1, found and successfully echoed" is skipped by our shell.
Now try to write answer for following
1) Create following script
cat > trmif
#
Script to test rm command and exist status
#
if rm $1
then
 echo "$1 file deleted"
fi

(Press Ctrl + d to save)
$ chmod +x trmif
Now answer the following
A) There is file called foo, on your disk and you give command, $./trmfi foo what will be output.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (10 of 19) [17/08/2001 17.42.21]

B) If bar file not present on your disk and you give command, $./trmfi bar what will be output.
C) And if you type $./trmfi, What will be output.

(7)test command or [expr]
test command or [expr] is used to see if an expression is true, and if it is true it return zero(0),
otherwise returns nonzero(>0) for false. Syntax: test expression OR [expression]
Now will write script that determine whether given argument number is positive. Write script as
follows
$ cat > ispostive
#!/bin/sh
#
Script to see whether argument is positive
#
if test $1 -gt 0
then
 echo "$1 number is positive"
fi

Run it as follows
$ chmod +x ispostive
$ ispostive 5
Here o/p : 5 number is positive
$ispostive -45
Here o/p : Nothing is printed
$ispostive
Here o/p : ./ispostive: test: -gt: unary operator expected
The line, if test $1 -gt 0 , test to see if first command line argument($1) is greater than 0. If it is
true(0) then test will return 0 and output will printed as 5 number is positive but for -45 argument
there is no output because our condition is not true(0) (no -45 is not greater than 0) hence echo
statement is skipped. And for last statement we have not supplied any argument hence error
./ispostive: test: -gt: unary operator expected is generated by shell , to avoid such error we can test
whether command line argument is supplied or not. (See command 8 Script example). test or [expr
] works with
1.Integer (Number without decimal point)
2.File types
3.Character strings
For Mathematics use following operator in Shell Script

Math- ematical
Operator in
Shell Script

Meaning
Normal Arithmetical/
Mathematical Statements

But in Shell

For test statement
with if command

For [expr]
statement with if
command

-eq is equal to 5 == 6 if test 5 -eq 6 if expr [5 -eq 6]

-ne is not equal to 5 != 6 if test 5 -ne 6 if expr [5 -ne 6]

-lt is less than 5 < 6 if test 5 -lt 6 if expr [5 -lt 6]

-le
is less than or
equal to

5 <= 6 if test 5 -le 6 if expr [5 -le 6]

-gt is greater than 5 > 6 if test 5 -gt 6 if expr [5 -gt 6]

-ge
is greater than or
equal to

5 >= 6 if test 5 -ge 6 if expr [5 -ge 6]

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (11 of 19) [17/08/2001 17.42.21]

NOTE: == is equal, != is not equal.
For string Comparisons use

Operator Meaning

string1 = string2 string1 is equal to string2

string1 != string2 string1 is NOT equal to string2

string1 string1 is NOT NULL or not defined

-n string1 string1 is NOT NULL and does exist

-z string1 string1 is NULL and does exist

Shell also test for file and directory types

Test Meaning

-s file Non empty file

-f file Is File exist or normal file and not a directory

-d dir Is Directory exist and not a file

-w file Is writeable file

-r file Is read-only file

-x file Is file is executable

Logical Operators
Logical operators are used to combine two or more condition at a time

Operator Meaning

! expression Logical NOT

expression1 -a expression2 Logical AND

expression1 -o expression2 Logical OR

(8)if...else...fi
If given condition is true then command1 is executed otherwise command2 is executed.
Syntax:

 if condition
 then
 command1 if condition is true or if exit status
 of condition is 0(zero)
 ...
 ...
 else
 command2 if condition is false or if exit status
 of condition is >0 (nonzero)
 ...
 ...
 fi

For eg. Write Script as follows
$ cat > isnump_n
#!/bin/sh
#

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (12 of 19) [17/08/2001 17.42.21]

Script to see whether argument is positive or negative
#
if [$# -eq 0]
then
 echo "$0 : You must give/supply one integers"
 exit 1
fi

if test $1 -gt 0
then
 echo "$1 number is positive"
else
 echo "$1 number is negative"
fi

Try it as follows
$ chmod +x isnump_n
$ isnump_n 5
Here o/p : 5 number is positive
$ isnump_n -45
Here o/p : -45 number is negative
$ isnump_n
Here o/p : ./ispos_n : You must give/supply one integers
$ isnump_n 0
Here o/p : 0 number is negative
Here first we see if no command line argument is given then it print error message as "./ispos_n :
You must give/supply one integers". if statement checks whether number of argument ($#) passed
to script is not equal (-eq) to 0, if we passed any argument to script then this if statement is false
and if no command line argument is given then this if statement is true. The echo command i.e.
echo "$0 : You must give/supply one integers"
 | |
 | |
 1 2
1 will print Name of script
2 will print this error message
And finally statement exit 1 causes normal program termination with exit status 1 (nonzero means
script is not successfully run), The last sample run $ isnump_n 0 , gives output as "0 number is
negative", because given argument is not > 0, hence condition is false and it's taken as negative
number. To avoid this replace second if statement with if test $1 -ge 0.

(9)Multilevel if-then-else
Syntax:

 if condition
 then
 condition is zero (true - 0)
 execute all commands up to elif statement
 elif condition1
 condition1 is zero (true - 0)
 execute all commands up to elif statement
 elif condition2
 condition2 is zero (true - 0)
 execute all commands up to elif statement

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (13 of 19) [17/08/2001 17.42.21]

 else
 None of the above condtion,condtion1,condtion2 are true (i.e.
 all of the above nonzero or false)
 execute all commands up to fi
 fi

For e.g. Write script as $ cat > elf #!/bin/sh # # Script to test if..elif...else # # if [$1 -gt 0]
then echo "$1 is positive" elif [$1 -lt 0] then echo "$1 is negative" elif [$1 -eq 0]
then echo "$1 is zero" else echo "Opps! $1 is not number, give number" fi Try above
script with $ chmod +x elf $./elf 1 $./elf -2 $./elf 0 $./elf a Here o/p for last
sample run: ./elf: [: -gt: unary operator expected ./elf: [: -lt: unary operator expected ./elf: [: -eq:
unary operator expected Opps! a is not number, give number Above program gives error for last
run, here integer comparison is expected therefore error like "./elf: [: -gt: unary operator expected"
occurs, but still our program notify this thing to user by providing message "Opps! a is not number,
give number". (10)Loops in Shell Scripts
Computer can repeat particular instruction again and again, until particular condition satisfies. A
group of instruction that is executed repeatedly is called a loop.
(a) for loop Syntax:

 for { variable name } in { list }
 do
 execute one for each item in the list until the list is
 not finished (And repeat all statement between do and done)
 done

Suppose,
$ cat > testfor
for i in 1 2 3 4 5
do
 echo "Welcome $i times"
done
Run it as,
$ chmod +x testfor
$./testfor
The for loop first creates i variable and assigned a number to i from the list of number from 1 to 5,
The shell execute echo statement for each assignment of i. (This is usually know as iteration) This
process will continue until all the items in the list were not finished, because of this it will repeat 5
echo statements. for e.g. Now try script as follows
$ cat > mtable
#!/bin/sh
#
#Script to test for loop
#
#
if [$# -eq 0]
then
 echo "Error - Number missing form command line argument"
 echo "Syntax : $0 number"
 echo " Use to print multiplication table for given number"
 exit 1
fi
n=$1
for i in 1 2 3 4 5 6 7 8 9 10

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (14 of 19) [17/08/2001 17.42.21]

do
 echo "$n * $i = `expr $i * $n`"
done

Save and Run it as
$ chmod +x mtable
$./mtable 7
$./mtable
For first run, Above program print multiplication table of given number where i = 1,2 ... 10 is
multiply by given n (here command line argument 7) in order to produce multiplication table as
7 * 1 = 7
7 * 2 = 14
...
..
7 * 10 = 70 And for Second run, it will print message -
Error - Number missing form command line argument
Syntax : ./mtable number
 Use to print multiplication table for given number
This happened because we have not supplied given number for which we want multiplication table,
Hence we are showing Error message, Syntax and usage of our script. This is good idea if our
program takes some argument, let the user know what is use of this script and how to used it. Note
that to terminate our script we used 'exit 1' command which takes 1 as argument (1Indicates error
and therefore script is terminated)

(b)while loop
Syntax:

 while [condition]
 do
 command1
 command2
 command3
 ..

 done

Loop is executed as long as given condition is true. For eg. Above for loop program can be written
using while loop as
$cat > nt1
#!/bin/sh
#
#Script to test while statement
#
#
if [$# -eq 0]
then
 echo "Error - Number missing form command line argument"
 echo "Syntax : $0 number"
 echo " Use to print multiplication table for given number"
 exit 1
fi
n=$1
i=1
while [$i -le 10]

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (15 of 19) [17/08/2001 17.42.21]

do
 echo "$n * $i = `expr $i * $n`"
 i=`expr $i + 1`
done

Save it and try as
$ chmod +x nt1
$./nt1 7
Above loop can be explained as follows

n=$1
Set the value of command line argument to
variable n. (Here it's set to 7)

i=1 Set variable i to 1

while [$i -le 10]
This is our loop condition, here if value of i is less
than 10 then, shell execute all statements between
do and done

do Start loop

echo "$n * $i = `expr $i * $n`"

Print multiplication table as
7 * 1 = 7
7 * 2 = 14
....
7 * 10 = 70, Here each time value of variable n is
multiply be i.

i=`expr $i + 1`

Increment i by 1 and store result to i. (i.e. i=i+1)
Caution: If we ignore (remove) this statement than
our loop become infinite loop because value of
variable i always remain less than 10 and program
will only output
7 * 1 = 7
...
...
E (infinite times)

done
Loop stops here if i is not less than 10 i.e.
condition of loop is not true. Hence
loop is terminated.

From the above discussion not following points about loops
(a) First, the variable used in loop condition must be initialized, Next execution of the loop begins.
(b) A test (condition) is made at the beginning of each iteration.
(c) The body of loop ends with a statement that modifies the value of the test (condition) variable.

(11) The case Statement
The case statement is good alternative to Multilevel if-then-else-fi statement. It enable you to match
several values against one variable. Its easier to read and write.
Syntax:

 case $variable-name in
 pattern1) command
 ...
 ..
 command;;
 pattern2) command

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (16 of 19) [17/08/2001 17.42.21]

 ...
 ..
 command;;
 patternN) command
 ...
 ..
 command;;
 *) command
 ...
 ..
 command;;
 esac

The $variable-name is compared against the patterns until a match is found. The shell then
executes all the statements up to the two semicolons that are next to each other. The default is *)
and its executed if no match is found. For eg. Create script as follows
$ cat > car
#
if no vehicle name is given
i.e. -z $1 is defined and it is NULL
#
if no command line arg

if [-z $1]
then
 rental="*** Unknown vehicle ***"
elif [-n $1]
then
otherwise make first arg as rental
 rental=$1
fi

case $rental in
 "car") echo "For $rental Rs.20 per k/m";;
 "van") echo "For $rental Rs.10 per k/m";;
 "jeep") echo "For $rental Rs.5 per k/m";;
 "bicycle") echo "For $rental 20 paisa per k/m";;
 *) echo "Sorry, I can not gat a $rental for you";;
esac

Save it by pressing CTRL+D
$ chmod +x car
$ car van
$ car car
$ car Maruti-800
Here first we will check, that if $1(first command line argument) is not given set value of rental
variable to "*** Unknown vehicle ***",if value given then set it to given value. The $rental is
compared against the patterns until a match is found. Here for first run its match with van and it will
show output For van Rs.10 per k/m. For second run it print, "For car Rs.20 per k/m". And for last
run, there is no match for Maruti-800, hence default i.e. *) is executed and it prints, "Sorry, I can
not gat a Maruti-800 for you". Note that esac is always required to indicate end of case statement.

(12)The read Statement
Use to get input from keyboard and store them to variable.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (17 of 19) [17/08/2001 17.42.21]

Syntax: read varible1, varible2,...varibleN
Create script as
$ cat > sayH
#
#Script to read your name from key-board
#
echo "Your first name please:"
read fname
echo "Hello $fname, Lets be friend!"

Run it as follows
$ chmod +x sayH
$./sayH
This script first ask you your name and then waits to enter name from the user, Then user enters
name from keyboard (After giving name you have to press ENTER key) and this entered name
through keyboard is stored (assigned) to variable fname.

(13)Filename Shorthand or meta Characters (i.e. wild cards)
* or ? or [...] is one of such shorthand character.

* Matches any string or group of characters.
For e.g. $ ls * , will show all files, $ ls a* - will show all files whose first name is starting with letter
'a', $ ls *.c ,will show all files having extension .c $ ls ut*.c, will show all files having extension .c
but first two letters of file name must be 'ut'.

? Matches any single character.
For e.g. $ ls ? , will show one single letter file name, $ ls fo? , will show all files whose names are 3
character long and file name begin with fo

[...] Matches any one of the enclosed characters.
For e.g. $ ls [abc]* - will show all files beginning with letters a,b,c
[..-..] A pair of characters separated by a minus sign denotes a range;
For eg. $ ls /bin/[a-c]* - will show all files name beginning with letter a,b or c like

 /bin/arch /bin/awk /bin/bsh /bin/chmod /bin/cp
 /bin/ash /bin/basename /bin/cat /bin/chown /bin/cpio
 /bin/ash.static /bin/bash /bin/chgrp /bin/consolechars /bin/csh

But
$ ls /bin/[!a-o]
$ ls /bin/[^a-o]
If the first character following the [is a ! or a ^ then any character not enclosed is matched i.e. do
not show us file name that beginning with a,b,c,e...o, like

 /bin/ps /bin/rvi /bin/sleep /bin/touch /bin/view
 /bin/pwd /bin/rview /bin/sort /bin/true /bin/wcomp
 /bin/red /bin/sayHello /bin/stty /bin/umount /bin/xconf
 /bin/remadmin /bin/sed /bin/su /bin/uname /bin/ypdomainname
 /bin/rm /bin/setserial /bin/sync /bin/userconf /bin/zcat
 /bin/rmdir /bin/sfxload /bin/tar /bin/usleep
 /bin/rpm /bin/sh /bin/tcsh /bin/vi

(14)command1;command2
To run two command with one command line.For eg. $ date;who ,Will print today's date followed

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (18 of 19) [17/08/2001 17.42.21]

by users who are currently login. Note that You can't use $ date who for same purpose, you must
put semicolon in between date and who command.

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/shellprog.htm (19 of 19) [17/08/2001 17.42.21]

http://www.freeos.com/

More Advanced Shell Script Commands

/dev/null - Use to send unwanted output of program
This is special Linux file which is used to send any unwanted output from program/command.
Syntax: command > /dev/null
For e.g. $ ls > /dev/null , output of this command is not shown on screen its send to this special file.
The /dev directory contains other device files. The files in this directory mostly represent peripheral
devices such disks liks floppy disk, sound card, line printers etc.

Local and Global Shell variable (export command)
Normally all our variables are local. Local variable can be used in same shell, if you load another copy of
shell (by typing the /bin/bash at the $ prompt) then new shell ignored all old shell's variable. For e.g.
Consider following example
$ vech=Bus
$ echo $vech
Bus
$ /bin/bash
$ echo $vech

NOTE:-Empty line printed
$ vech=Car
$ echo $vech
Car
$ exit
$ echo $vech
Bus

Command Meaning

$ vech=Bus Create new local variable 'vech' with Bus as value
in first shell

$ echo $vech Print the contains of variable vech

$ /bin/bash Now load second shell in memory (Which ignores
all old shell's variable)

$ echo $vech Print the contains of variable vech

$ vech=Car Create new local variable 'vech' with Car as value
in second shell

$ echo $vech Print the contains of variable vech

$ exit Exit from second shell return to first shell

$ echo $vech Print the contains of variable vech (Now you can
see first shells variable and its value)

We can copy old shell's variable to new shell (i.e. first shells variable to seconds shell), such variable is
know as Global Shell variable. To do this use export command
Syntax: export variable1, variable2,.....variableN
For e.g.
$ vech=Bus
$ echo $vech
Bus
$ export vech
$ /bin/bash
$ echo $vech
Bus
$ exit
$ echo $vech

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (1 of 17) [17/08/2001 17.42.32]

Bus

Command Meaning

$ vech=Bus Create new local variable 'vech' with Bus as value
in first shell

$ echo $vech Print the contains of variable vech

$ export vech Export first shells variable to second shell

$ /bin/bash
Now load second shell in memory (Old shell's
variable is accessed from second shell, if they are
exported)

$ echo $vech Print the contains of variable vech

$ exit Exit from second shell return to first shell

$ echo $vech Print the contains of variable vech

Conditional execution i.e. && and ||
The control operators are && (read as AND) and || (read as OR). An AND list has the
Syntax: command1 && command2
Here command2 is executed if, and only if, command1 returns an exit status of zero. An OR list has the
Syntax: command1 || command2
Here command2 is executed if and only if command1 returns a non-zero exit status. You can use both as
follows
command1 && comamnd2 if exist status is zero || command3 if exit status is non-zero
Here if command1 is executed successfully then shell will run command2 and if command1 is not
successful then command3 is executed. For e.g.
$ rm myf && echo File is removed successfully || echo File is not removed
If file (myf) is removed successful (exist status is zero) then "echo File is removed successfully" statement
is executed, otherwise "echo File is not removed" statement is executed (since exist status is non-zero)

I/O Redirection and file descriptors
As you know I/O redirectors are used to send output of command to file or to read input from file. (See
Input/Output redirection). Now consider following examples
$ cat > myf
 This is my file
 ^D
Above command send output of cat command to myf file
$ cal
Above command prints calendar on screen, but if you wish to store this calendar to file then give
command
$ cal > mycal
The cal command send output to mycal file. This is called output redirection
$ sort
10
-20
11
2
^D
-20
2
10
11
Here sort command takes input from keyboard and then sorts the number, If we wish to take input from
file give command as follows
$ cat > nos
10

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (2 of 17) [17/08/2001 17.42.32]

-20
11
2
^D
$ sort < nos
-20
2
10
11
First we have created the file nos, then we have taken input from this file and sort command prints sorted
numbers. This is called input redirection. In Linux (And in C programming Language) your keyboard,
screen etc are treated as files. Following are name of such files

Standard File
File Descriptors

number
Use Example

stdin 0 as Standard input Keyboard

stdout 1 as Standard output Screen

stderr 2 as Standard error Screen

By default in Linux every program has three files associated with it, (when we start our program these
three files are automatically opened by your shell) The use of first two files (i.e. stdin and stdout) , are
already seen by us. The last file stderr (numbered as 2) is used by our program to print error on screen.
You can redirect the output from a file descriptor directly to file with following
Syntax: file-descriptor-number>filename
For e.g.
$ rm bad_file_name111
rm: cannot remove `bad_file_name111': No such file or directory ,is the output (error) of the above
program. Now if we try to redirect this error-output to file, it can not be send to file
$ rm bad_file_name111 > er
Still it prints output on stderr as rm: cannot remove `bad_file_name111': No such file or directory, And if
you see er file as $ cat er , This file is empty, since output is send to error device and you can not redirect
it to copy this error-output to your file 'er'. To overcome this we have to use following command
$ rm bad_file_name111 2>er
Note that no space are allowed between 2 and >, The 2>er directs the standard error output to file. 2
number is default number of stderr file. Now consider another example, here we are writing shell script as
follows
$ cat > demoscr
if [$# -ne 2]
then
echo "Error : Number are not supplied"
echo "Usage : $0 number1 number2"
exit 1
fi
ans=`expr $1 + $2`
echo "Sum is $ans"

Try it as follows
$ chmod +x demoscr
$./demoscr
Error : Number are not supplied
Usage : ./demoscr number1 number2
$./demoscr > er1
$./demoscr 5 7
Sum is 12

Here for first sample run , our script prints error message indicating that we have not given two number.
For second sample run, we have redirect output of our script to file, since it's error we have to show it to

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (3 of 17) [17/08/2001 17.42.32]

user, It means we have to print our error message on stderr not on stdout. To overcome this problem
replace above echo statements as follows
echo "Error : Number are not supplied" 1>&2
echo "Usage : $0 number1 number2" 1>&2
Now if you run as
$./demoscr > er1
Error : Number are not supplied
Usage : ./demoscr number1 number2
It will print error message on stderr and not on stdout. The 1>&2 at the end of echo statement, directs
the standard output (stdout) to standard error (stderr) device.
Syntax: from>&destination

Functions
Function is series of instruction/commands. Function performs particular activity in shell. To define
function use following
Syntax:

 function-name ()
 {
 command1
 command2

 ...
 commandN
 return
 }

Where function-name is name of you function, that executes these commands. A return statement will
terminate the function. For e.g. Type SayHello() at $ prompt as follows
$ SayHello()
{
echo "Hello $LOGNAME, Have nice computing"
return
}
Now to execute this SayHello() function just type it name as follows
$ SayHello
Hello xxxxx, Have nice computing
This way you can call your function. Note that after restarting your computer you will loss this SayHello()
function, since its created for that session only. To overcome this problem and to add you own function to
automat some of the day today life task, your function to /etc/bashrc file. Note that to add function to this
file you must logon as root. Following is the sample /etc/bashrc file with today() function , which is used
to print formatted date. First logon as root or if you already logon with your name (your login is not root),
and want to move to root account, then you can type following command , when asked for password type
root (administrators) password
$ su
password:
Now open file as (Note your prompt is changed to # from $ to indicate you are root)
vi /etc/bashrc
OR
mcedit /etc/bashrc
At the end of file add following in /etc/bashrc file
#
today() to print formatted date
#
To run this function type today at the $ prompt
Added by Vivek to show function in Linux
#

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (4 of 17) [17/08/2001 17.42.32]

today()
{
echo This is a `date +"%A %d in %B of %Y (%r)"`
return
}

Save the file and exit it, after all this modification your file may look like as follows

/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

For some unknown reason bash refuses to inherit
PS1 in some circumstances that I can't figure out.
Putting PS1 here ensures that it gets loaded every time.

PS1="[\u@\h \W]\\$ "

#
today() to print formatted date
#
To run this function type today at the $ prompt
Added by Vivek to show function in Linux
today()
{
echo This is a `date +"%A %d in %B of %Y (%r)"`
return
}

To run function first completely logout by typing exit at the $prompt (Or press CTRL + D, Note you may
have to type exit (CTRL +D) twice if you login to root account by using su command) ,then login and type
$ today , this way today() is available to all user in your system, If you want to add particular function to
particular user then open .bashrc file in your home directory as follows
vi .bashrc
OR
mcedit .bashrc
At the end of file add following in .bashrc file
SayBuy()
{
 echo "Buy $LOGNAME ! Life never be the same, until you log again!"
 echo "Press a key to logout. . ."
 read
 return
}

Save the file and exit it, after all this modification your file may look like as follows

.bashrc
#
User specific aliases and functions
Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc
fi

SayBuy()

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (5 of 17) [17/08/2001 17.42.32]

{
 echo "Buy $LOGNAME ! Life never be the same, until you log again!"
 echo "Press a key to logout. . ."
 read
 return
}

To run function first logout by typing exit at the $ prompt (Or press CTRL + D) ,then logon and type $
SayBuy , this way SayBuy() is available to only in your login and not to all user in system, Use .bashrc
file in your home directory to add User specific aliases and functions only. (Tip: If you want to show some
message or want to perform some action when you logout, Open file .bash_logout in your home directory
and add your stuff here For e.g. When ever I logout, I want to show message Buy! Then open your
.bash_logout file using text editor such as vi and add statement
echo "Buy $LOGNAME, Press a key. . ."
read
Save and exit from the file. Then to test this logout from your system by pressing CTRL + D (or type exit)
immediately you will see message "Buy xxxxx, Press a key. . .", after pressing key you will be exited.)

User Interface and dialog utility
Good program/shell script must interact with users. There are two ways to this one is use command line
to script when you want input, second use statement like echo and read to read input into variable from
the prompt. For e.g. Write script as
$ cat > userinte
#
Script to demo echo and read command for user interaction
#
echo "Your good name please :"
read na
echo "Your age please :"
read age
neyr=`expr $age + 1`
echo "Hello $na, next year you will be $neyr yrs old."

Save it and run as
$ chmod +x userinte
$./userinte

Your good name please :
Vivek
Your age please :
25
Hello Vivek, next year you will be 26 yrs old.
Even you can create menus to interact with user, first show menu option, then ask user to choose menu
item, and take appropriate action according to selected menu item, this technique is show in following
script
$ cat > menuui
#
Script to create simple menus and take action according to that selected
menu item
#
while :
do
 clear
 echo "-------------------------------------"
 echo " Main Menu "
 echo "-------------------------------------"
 echo "[1] Show Todays date/time"
 echo "[2] Show files in current directory"

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (6 of 17) [17/08/2001 17.42.32]

 echo "[3] Show calendar"
 echo "[4] Start editor to write letters"
 echo "[5] Exit/Stop"
 echo "======================="
 echo -n "Enter your menu choice [1-5]: "
 read yourch
 case $yourch in
 1) echo "Today is `date` , press a key. . ." ; read ;;
 2) echo "Files in `pwd`" ; ls -l ; echo "Press a key. . ." ; read ;;
 3) cal ; echo "Press a key. . ." ; read ;;
 4) vi ;;
 5) exit 0 ;;
 *) echo "Opps!!! Please select choice 1,2,3,4, or 5";
 echo "Press a key. . ." ; read ;;
 esca

done
Above all statement explained in following table

Statement Explanation

while :

Start infinite loop, this loop will
only break if you select 5 (i.e.
Exit/Stop menu item) as your menu
choice

do Start loop

clear Clear the screen, each and every
time

echo "-------------------------------------"
echo " Main Menu "
echo "-------------------------------------"
echo "[1] Show Todays date/time"
echo "[2] Show files in current directory"
echo "[3] Show calendar"
echo "[4] Start editor to write letters"
echo "[5] Exit/Stop"
echo "======================="

Show menu on screen with menu
items

echo -n "Enter your menu choice [1-5]: " Ask user to enter menu item
number

read yourch Read menu item number from user

case $yourch in
1) echo "Today is `date` , press a key. . ." ; read ;;
2) echo "Files in `pwd`" ; ls -l ;
 echo "Press a key. . ." ; read ;;
3) cal ; echo "Press a key. . ." ; read ;;
4) vi ;;
5) exit 0 ;;
*) echo "Opps!!! Please select choice 1,2,3,4, or 5";
 echo "Press a key. . ." ; read ;;
 esca

Take appropriate action according
to selected menu item, If menu item
is not between 1 - 5, then show
error and ask user to input number
between 1-5 again

done Stop loop , if menu item number is
5 (i.e. Exit/Stop)

User interface usually includes, menus, different type of boxes like info box, message box, Input box etc.
In Linux shell there is no built-in facility available to create such user interface, But there is one utility
supplied with Red Hat Linux version 6.0 called dialog, which is used to create different type of boxes like
info box, message box, menu box, Input box etc. Now try dialog utility as follows :

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (7 of 17) [17/08/2001 17.42.32]

$ cat > dia1
dialog --title "Linux Dialog Utility Infobox" --backtitle "Linux Shell Script\
Tutorial" --infobox "This is dialog box called infobox, which is used\
to show some information on screen, Thanks to Savio Lam and\
Stuart Herbert to give us this utility. Press any key. . . " 7 50 ; read

Save the shell script and run as
$ chmod +x dia1
$./dia1
After executing this dialog statement you will see box on screen with titled as "Welcome to Linux Dialog
Utility" and message "This is dialog....Press any key. . ." inside this box. The title of box is specified by
--title option and info box with --infobox "Message" with this option. Here 7 and 50 are height-of-box and
width-of-box respectively. "Linux Shell Script Tutorial" is the backtitle of dialog show on upper left side of
screen and below that line is drawn. Use dialog utility to Display dialog boxes from shell scripts.
Syntax:

 dialog --title {title} --backtitle {backtitle} {Box options}
 where Box options can be any one of following
 --yesno {text} {height} {width}
 --msgbox {text} {height} {width}
 --infobox {text} {height} {width}
 --inputbox {text} {height} {width} [{init}]
 --textbox {file} {height} {width}
 --menu {text} {height} {width} {menu} {height} {tag1} item1}...

msgbox using dialog utility
$cat > dia2
dialog --title "Linux Dialog Utility Msgbox" --backtitle "Linux Shell Script\
Tutorial" --msgbox "This is dialog box called msgbox, which is used\
to show some information on screen which has also Ok button, Thanks to Savio Lam\
and Stuart Herbert to give us this utility. Press any key. . . " 9 50

Save it and run as
$ chmod +x dia2
$./dia2

yesno box using dialog utility
$ cat > dia3
dialog --title "Alert : Delete File" --backtitle "Linux Shell Script\
Tutorial" --yesno "\nDo you want to delete '/usr/letters/jobapplication'\
file" 7 60
sel=$?
case $sel in
 0) echo "You select to delete file";;
 1) echo "You select not to delete file";;
 255) echo "Canceled by you by pressing [ESC] key";;
esac

Save it and run as
$ chmod +x dia3
$./dia3

Above script creates yesno type dialog box, which is used to ask some questions to the user , and answer
to those question either yes or no. After asking question how do we know, whether user has press yes or
no button ? The answer is exit status, if user press yes button exit status will be zero, if user press no
button exit status will be one and if user press Escape key to cancel dialog box exit status will be one 255.
That is what we have tested in our above shell as

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (8 of 17) [17/08/2001 17.42.32]

Statement Meaning

sel=$? Get exit status of dialog
utility

case $sel in
0) echo "You select to delete file";;
1) echo "You select not to delete file";;
255) echo "Canceled by you by pressing [Escape] key";;
esac

Now take action according
to exit status of dialog
utility, if exit status is 0 ,
delete file, if exit status is
1 do not delete file and if
exit status is 255, means
Escape key is pressed.

inputbox using dialog utility
$ cat > dia4
dialog --title "Inputbox - To take input from you" --backtitle "Linux Shell\
Script Tutorial" --inputbox "Enter your name please" 8 60 2>/tmp/input.$$

sel=$?
na=`cat /tmp/input.$$`
case $sel in
 0) echo "Hello $na" ;;
 1) echo "Cancel is Press" ;;
 255) echo "[ESCAPE] key pressed" ;;
esac
rm -f /tmp/input.$$

Inputbox is used to take input from user, Here we are taking Name of user as input. But where we are
going to store inputted name, the answer is to redirect inputted name to file via statement
2>/tmp/input.$$ at the end of dialog command, which means send screen output to file called
/tmp/input.$$, letter we can retrieve this inputted name and store to variable as follows
na=`cat /tmp/input.$$`. For inputbox exit status is as follows

Exit Status for Inputbox Meaning

0 Command is successful

1 Cancel button is pressed by user

255 Escape key is pressed by user

Now we will write script to create menus using dialog utility, following are menu items
Date/time
Calendar
Editor
and action for each menu-item is follows

MENU-ITEM ACTION

Date/time Show current date/time
Calendar Show calendar
Editor Start vi Editor

Create script as follows
$ cat > smenu
#
#How to create small menu using dialog
#
dialog --backtitle "Linux Shell Script Tutorial " --title "Main\
Menu" --menu "Move using [UP] [DOWN],[Enter] to\

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (9 of 17) [17/08/2001 17.42.32]

Select" 15 50 3\
Date/time "Shows Date and Time"\
Calendar "To see calendar "\
Editor "To start vi editor " 2>/tmp/menuitem.$$

menuitem=`cat /tmp/menuitem.$$`

opt=$?

case $menuitem in
 Date/time) date;;
 Calendar) cal;;
 Editor) vi;;
esac

rm -f /tmp/menuitem.$$

Save it and run as
$ chmod +x smenu
$./smenu
Here --menu option is used of dialog utility to create menus, menu option take

--menu options Meaning

"Move using [UP] [DOWN],[Enter] to Select" This is text show before menu

15 Height of box

50 Width of box

3 Height of menu

Date/time "Shows Date and Time"
First menu item called as tag1 (i.e. Date/time)
and description for menu item called as item1
(i.e. "Shows Date and Time")

Calendar "To see calendar "

First menu item called as tag2 (i.e. Calendar)
and description for menu item called as item2
(i.e. "To see calendar")

Editor "To start vi editor "
First menu item called as tag3 (i.e. Editor) and
description for menu item called as item3
(i.e."To start vi editor")

2>/tmp/menuitem.$$ Send sleeted menu item (tag) to this temporary
file

After creating menus, user selects menu-item by pressing enter key the selected choice is redirected to
temporary file, Next this menu-item is retrieved from temporary file and following case statement
compare the menu-item and takes appropriate step according to selected menu item. As you see, dialog
utility allows more powerful user interaction then the older read and echo statement. The only problem
with dialog utility is it work slowly.

trap command
Now consider following script
$ cat > testsign
ls -R /

Save and run it as
$ chmod +x testsign
$./testsign
Now if you press ctrl + c , while running this script, script get terminated. The ctrl + c here work as
signal, When such signal occurs its send to all process currently running in your system. Now consider
following shell script

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (10 of 17) [17/08/2001 17.42.32]

$ cat > testsign1
#
Why to trap signal, version 1
#
Take_input1()
{
 recno=0
 clear
 echo "Appointment Note keeper Application for Linux"
 echo -n "Enter your database file name : "
 read filename

if [! -f $filename]; then
 echo "Sorry, $filename does not exit, Creating $filename database"
 echo "Appointment Note keeper Application database file" > $filename
fi

echo "Data entry start data: `date`" >/tmp/input0.$$
#
Set a infinite loop
#
while :
do
 echo -n "Appointment Title:"
 read na
 echo -n "Appoint time :"
 read ti
 echo -n "Any Remark :"
 read remark
 echo -n "Is data okay (y/n) ?"
 read ans

 if [$ans = y -o $ans = Y]; then
 recno=`expr $recno + 1`
 echo "$recno. $na $ti $remark" >> /tmp/input0.$$
 fi

 echo -n "Add next appointment (y/n)?"
 read isnext

 if [$isnext = n -o $isnext = N]; then
 cat /tmp/input0.$$ >> $filename
 rm -f /tmp/input0.$$
 return # terminate loop
 fi
 done
}

#
#
Call our user define function : Take_input1
#
Take_input1

Save it and run as
$ chmod +x testsign1
$./testsign1
It first ask you main database file where all appointment of that day is stored, if no such database file
found, file is created, after that it open one temporary file in /tmp directory, and puts today's date in that

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (11 of 17) [17/08/2001 17.42.32]

file. Then one infinite loop begins, which ask appointment title, time and remark, if this information is
correct its written to temporary file, After that script ask user , whether he/she wants add next
appointment record, if yes then next record is added , otherwise all records are copied from temporary file
to database file and then loop will be terminated. You can view your database file by using cat command.
Now problem is that while running this script, if you press CTRL + C, your shell script gets terminated and
temporary file are left in /tmp directory. For e.g. try as follows
$./testsign1
After given database file name and after adding at least one appointment record to temporary file press
CTRL+C, Our script get terminated, and it left temporary file in /tmp directory, you can check this by
giving command as follows
$ ls /tmp/input*
Our script needs to detect when such signal (event) occurs, To achieve this we have to first detect Signal
using trap command
Syntax: trap {commands} {signal number list}

Signal Number When occurs
0 shell exit
1 hangup
2 interrupt (CTRL+C)
3 quit
9 kill (cannot be caught)

To catch this signal in above script, put trap statement before calling Take_input1 function as trap
del_file 2 ., Here trap command called del_file() when 2 number interrupt (i.e.CTRL+C) occurs. Open
above script in editor and modify it so that at the end it will look like as follows
$ vi testsign1
 or
$ mcedit testsign1
#
signal is trapped to delete temporary file , version 2
#
del_file()
{
 echo "* * * CTRL + C Trap Occurs (removing temporary file)* * *"
 rm -f /tmp/input0.$$
 exit 1
}

Take_input1()
{
 recno=0
 clear
 echo "Appointment Note keeper Application for Linux"
 echo -n "Enter your database file name : "
 read filename

if [! -f $filename]; then
 echo "Sorry, $filename does not exit, Creating $filename database"
 echo "Appointment Note keeper Application database file" > $filename
fi

echo "Data entry start data: `date`" >/tmp/input0.$$
#
Set a infinite loop
#
while :
do

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (12 of 17) [17/08/2001 17.42.32]

 echo -n "Appointment Title:"
 read na
 echo -n "Appoint time :"
 read ti
 echo -n "Any Remark :"
 read remark
 echo -n "Is data okay (y/n) ?"
 read ans

 if [$ans = y -o $ans = Y]; then
 recno=`expr $recno + 1`
 echo "$recno. $na $ti $remark" >> /tmp/input0.$$
 fi

 echo -n "Add next appointment (y/n)?"
 read isnext

 if [$isnext = n -o $isnext = N]; then
 cat /tmp/input0.$$ >> $filename
 rm -f /tmp/input0.$$
 return # terminate loop
 fi
 done
}

#
Set trap to for CTRL+C interrupt,
When occurs it first it calls del_file() and then exit
#
trap del_file 2

#
Call our user define function : Take_input1
#
Take_input1

Now save it run the program as
$./testsign1
After given database file name and after giving appointment title press CTRL+C, Here we have already
captured this CTRL + C signal (interrupt), so first our function del_file() is called, in which it gives
message as "* * * CTRL + C Trap Occurs (removing temporary file)* * * " and then it remove our
temporary file and then exit with exit status 1. Now check /tmp directory as follows
$ ls /tmp/input*
Now Shell will report no such temporary file exit.

getopts command
This command is used to check valid command line argument passed to script. Usually used in while loop.
Syntax: getopts {optsring} {variable1}

getopts is used by shell to parse command line argument. optstring contains the option letters to be
recognized; if a letter is followed by a colon, the option is expected to have an argument, which should
be separated from it by white space. Each time it is invoked, getopts places the next option in the shell
variable variable1, When an option requires an argument, getopts places that argument into the variable
OPTARG. On errors getopts diagnostic messages are printed when illegal options or missing option
arguments are encountered. If an illegal option is seen, getopts places ? into variable1. For e.g. We have
script called ani which has syntax as
ani -n -a -s -w -d
Options: These are optional argument
 -n name of animal

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (13 of 17) [17/08/2001 17.42.32]

 -a age of animal
 -s sex of animal
 -w weight of animal
 -d demo values (if any of the above options are used
 their values are not taken)
$ cat > ani
#
Usage: ani -n -a -s -w -d
#

#
help_ani() To print help
#
help_ani()
{
 echo "Usage: $0 -n -a -s -w -d"
 echo "Options: These are optional argument"
 echo " -n name of animal"
 echo " -a age of animal"
 echo " -s sex of animal "
 echo " -w weight of animal"
 echo " -d demo values (if any of the above options are used "
 echo " their values are not taken)"
 exit 1
}
#
#Start main procedure
#

#
#Set default value for variable
#
isdef=0

na=Moti
age="2 Months"
sex=Male
weight=3Kg

#
#if no argument
#
if [$# -lt 1]; then
 help_ani
fi

while getopts n:a:s:w:d opt
do
 case "$opt" in
 n) na="$OPTARG";;
 a) age="$OPTARG";;
 s) sex="$OPTARG";;
 w) weight="$OPTARG";;
 d) isdef=1;;
 \?) help_ani;;
 esac
done

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (14 of 17) [17/08/2001 17.42.32]

if [$isdef -eq 0]
then
 echo "Animal Name: $na, Age: $age, Sex: $sex, Weight: $weight (user define mode)"
else
 na="Pluto Dog"
 age=3
 sex=Male
 weight=20kg
 echo "Animal Name: $na, Age: $age, Sex: $sex, Weight: $weight (demo mode)"
fi

Save it and run as follows
$ chmod +x ani
$ ani -n Lassie -a 4 -s Female -w 20Kg
$ ani -a 4 -s Female -n Lassie -w 20Kg
$ ani -n Lassie -s Female -w 20Kg -a 4
$ ani -w 20Kg -s Female -n Lassie -a 4
$ ani -w 20Kg -s Female
$ ani -n Lassie -a 4
$ ani -n Lassie
$ ani -a 2

See because of getopts, we can pass command line argument in different style. Following are invalid
options for ani script
$ ani -nLassie -a4 -sFemal -w20Kg
Here no space between option and their value.
$ ani -nLassie-a4-sFemal-w20Kg
$ ani -n Lassie -a 4 -s Female -w 20Kg -c Mammal
Here -c is not one of the options.

More examples of Shell Script (Exercise for You :-)
First try to write this shell script, as exercise, if any problem or for sample answer to this Shell script open
the shell script file supplied with this tutorial.

Q.1. How to write shell script that will add two nos, which are supplied as command line argument, and if
this two nos are not given show error and its usage
Answer: See Q1 shell Script.

Q.2.Write Script to find out biggest number from given three nos. Nos are supplies as command line
argument. Print error if sufficient arguments are not supplied.
Answer: See Q2 shell Script.

Q.3.Write script to print nos as 5,4,3,2,1 using while loop.
Answer: See Q3 shell Script.

Q.4. Write Script, using case statement to perform basic math operation as
follows
+ addition
- subtraction
x multiplication
/ division
The name of script must be 'q4' which works as follows
$./q4 20 / 3, Also check for sufficient command line arguments
Answer: See Q4 shell Script.

Q.5.Write Script to see current date, time, username, and current directory
Answer: See Q5 shell Script.

Q.6.Write script to print given number in reverse order, for eg. If no is 123 it must print as 321.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (15 of 17) [17/08/2001 17.42.32]

Answer: See Q6 shell Script.

Q.7.Write script to print given numbers sum of all digit, For eg. If no is 123 it's sum of all digit will be
1+2+3 = 6.
Answer: See Q7 shell Script.

Q.8.How to perform real number (number with decimal point) calculation in Linux
Answer: Use Linux's bc command

Q.9.How to calculate 5.12 + 2.5 real number calculation at $ prompt in Shell ?
Answer: Use command as , $ echo 5.12 + 2.5 | bc , here we are giving echo commands output to bc to
calculate the 5.12 + 2.5

Q.10.How to perform real number calculation in shell script and store result to
third variable , lets say a=5.66, b=8.67, c=a+b?
Answer: See Q10 shell Script.

Q.11.Write script to determine whether given file exist or not, file name is supplied as command line
argument, also check for sufficient number of command line argument
Answer: See Q11 shell Script.

Q.12.Write script to determine whether given command line argument ($1) contains "*" symbol or not, if
$1 does not contains "*" symbol add it to $1, otherwise show message "Symbol is not required". For e.g.
If we called this script Q12 then after giving ,
$ Q12 /bin
Here $1 is /bin, it should check whether "*" symbol is present or not if not it should print Required i.e.
/bin/*, and if symbol present then Symbol is not required must be printed. Test your script as
$ Q12 /bin
$ Q12 /bin/*
Answer: See Q12 shell Script

Q.13. Write script to print contains of file from given line number to next given number of lines. For e.g. If
we called this script as Q13 and run as
$ Q13 5 5 myf , Here print contains of 'myf' file from line number 5 to next 5 line of that file.
Answer: See Q13 shell Script

Q.14. Write script to implement getopts statement, your script should understand following command line
argument called this script Q14,
Q14 -c -d -m -e
Where options work as
-c clear the screen
-d show list of files in current working directory
-m start mc (midnight commander shell) , if installed
-e { editor } start this { editor } if installed
Answer: See Q14 shell Script

Q.15. Write script called sayHello, put this script into your startup file called .bash_profile, the script
should run as soon as you logon to system, and it print any one of the following message in infobox using
dialog utility, if installed in your system, If dialog utility is not installed then use echo statement to print
message : -
Good Morning
Good Afternoon
Good Evening , according to system time.
Answer: See Q15 shell Script

Q.16. How to write script, that will print, Message "Hello World" , in Bold and Blink effect, and in different
colors like red, brown etc using echo command.
Answer: See Q16 shell Script

Q.17. Write script to implement background process that will continually print current time in upper right

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (16 of 17) [17/08/2001 17.42.32]

corner of the screen , while user can do his/her normal job at $ prompt.
Answer: See Q17 shell Script.

Q.18. Write shell script to implement menus using dialog utility. Menu-items and action according to select
menu-item is as follows

Menu-Item Purpose Action for Menu-Item

Date/time To see current date time Date and time must be shown using infobox of dialog
utility

Calendar To see current calendar Calendar must be shown using infobox of dialog utility

Delete To delete selected file

First ask user name of directory where all files are
present, if no name of directory given assumes current
directory, then show all files only of that directory, Files
must be shown on screen using menus of dialog utility,
let the user select the file, then ask the confirmation to
user whether he/she wants to delete selected file, if
answer is yes then delete the file , report errors if any
while deleting file to user.

Exit To Exit this shell script Exit/Stops the menu driven program i.e. this script

Note: Create function for all action for e.g. To show date/time on screen create function
show_datetime().
Answer: See Q18 shell Script.

Q.19. Write shell script to show various system configuration like
1) Currently logged user and his logname
2) Your current shell
3) Your home directory
4) Your operating system type
5) Your current path setting
6) Your current working directory
7) Show Currently logged number of users
8) About your os and version ,release number , kernel version
9) Show all available shells
10) Show mouse settings
11) Show computer cpu information like processor type, speed etc
12) Show memory information
13) Show hard disk information like size of hard-disk, cache memory, model etc
14) File system (Mounted)
Answer: See Q19 shell Script.

That's all!, Thanks for reading, This tutorial ends here, but Linux programming environment is big, rich
and productive (As you see from above shell script exercise), you should continue to read more advance
topics and books. If you have any suggestion or new ideas or problem with this tutorial, please feel free to
contact me.
My e-mail is gite-vivek@usa.net.

© 1998-2000 FreeOS.com (I) Pvt. Ltd. All rights reserved.

Linux Shell Script Tutorial

http://www.freeos.com/guides/lsst/maspc.htm (17 of 17) [17/08/2001 17.42.32]

mailto:gite-vivek@usa.net
http://www.freeos.com/

	freeos.com
	Linux Shell Scripting Tutorial
	Linux Shell Script Tutorial
	Linux Shell Script Tutorial
	Linux Shell Script Tutorial
	Linux Shell Script Tutorial
	Linux Shell Script Tutorial

